Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/9942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeep, K.-
dc.contributor.authorSingh K.P.-
dc.contributor.authorKansal, Mitthan Lal-
dc.contributor.authorMohan C.-
dc.date.accessioned2020-10-15T12:04:41Z-
dc.date.available2020-10-15T12:04:41Z-
dc.date.issued2011-
dc.identifier.citationExpert Systems with Applications (2011), 38(3): 1659-1667-
dc.identifier.issn9574174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2010.07.089-
dc.identifier.urihttp://repository.iitr.ac.in/handle/123456789/9942-
dc.description.abstractIn this paper, an interactive approach based method is proposed for solving multi-objective optimization problems. The proposed method can be used to obtain those Pareto-optimal solutions of the mathematical models of linear as well as nonlinear multi-objective optimization problems modeled in fuzzy or crisp environment which reasonably meet users aspirations. In the proposed method the objectives are treated as fuzzy goals and the satisfaction of constraints is considered at different α-level sets of the fuzzy parameter used. Product operator is used to aggregate the membership functions of the objectives. To initiate the algorithm, the decision maker has to specify his(er) preferences for the desired values of the objectives in the form of reference levels in the membership space. In each iterative phase, a single objective nonlinear (usually nonconvex) optimization problem has to be solved. It is solved using real coded genetic algorithm, MI-LXPM. Based on its outcomes, the decision maker has the option to modify, if felt necessary, some or all of the reference levels in the membership function space before initiating the next iterative phase. The algorithm is stopped where user's aspirations are reasonably met. © 2010 Elsevier Ltd. All rights reserved.-
dc.language.isoen_US-
dc.relation.ispartofExpert Systems with Applications-
dc.subjectFuzzy multi-objective optimization-
dc.subjectInteractive methods-
dc.subjectNonlinear programming-
dc.titleAn interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment-
dc.typeArticle-
dc.scopusid8561208900-
dc.scopusid56227275100-
dc.scopusid6602727475-
dc.scopusid7102974102-
dc.affiliationDeep, K., Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttrakhand, India-
dc.affiliationSingh, K.P., Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttrakhand, India-
dc.affiliationKansal, M.L., Water Resources Development and Management, Indian Institute of Technology, Roorkee 247 667, Uttrakhand, India-
dc.affiliationMohan, C., Ambala College of Engineering and Applied Research, Ambala, Haryana, India-
dc.description.correspondingauthorSingh, K. P.; Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttrakhand, India; email: kpsinghiitr@gmail.com-
Appears in Collections:Journal Publications [MA]
Journal Publications [WR]

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.