Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/9160
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Manoj Kumar-
dc.contributor.authorJain R.K.-
dc.contributor.authorMohanty R.K.-
dc.date.accessioned2020-10-09T06:18:12Z-
dc.date.available2020-10-09T06:18:12Z-
dc.date.issued1990-
dc.identifier.citationInternational Journal of Computer Mathematics (1990), 37(43862): 105-112-
dc.identifier.issn207160-
dc.identifier.urihttps://doi.org/10.1080/00207169008803938-
dc.identifier.urihttp://repository.iitr.ac.in/handle/123456789/9160-
dc.description.abstractIn this paper, we present finite difference methods of 0{k2 + kh2 + h4) for solving the system of 1-D nonlinear parabolic partial differential equations using three spatial grid points subject to Dirichlet boundary conditions. The method for scalar equation has been tested on Burgers’ equation. The numerical results show that the proposed method produces accurate and oscillation free solutions for large Reynolds numbers. © 1990, Taylor & Francis Group, LLC-
dc.language.isoen_US-
dc.relation.ispartofInternational Journal of Computer Mathematics-
dc.subjectBurgers’ equation-
dc.subjectFinite difference methods-
dc.subjectReynolds number-
dc.subjectsystem of nonlinear 1-D parabolic equations-
dc.titleHigh order difference methods for system of 1-d nonlinear parabolic partial differential equations-
dc.typeArticle-
dc.scopusid57225721930-
dc.scopusid26659438700-
dc.scopusid22938082300-
dc.affiliationJain, M.K., Department of Mathematics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India-
dc.affiliationJain, R.K., Department of Mathematics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India-
dc.affiliationMohanty, R.K., Department of Mathematics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India-
Appears in Collections:Journal Publications [HY]

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.