Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/2661
Title: Efficient Synthesis of Diethyl Carbonate from Propylene Carbonate and Ethanol Using Mg-La Catalysts: Characterization, Parametric, and Thermodynamic Analysis
Authors: Shukla K.
Srivastava V.C.
Published in: Industrial and Engineering Chemistry Research
Abstract: Synthesis of organic carbonates through nonphosgene routes is a thrust area of research, because of future potential use of organic carbonates as fuels. Transesterification of propylene carbonate (PC) using alcohols is a green route for organic carbonate synthesis. The present study investigates the use of PC, along with ethanol, for the catalytic synthesis of diethyl carbonate (DEC) using Mg-La catalysts. First, thermodynamic study has been performed for the synthesis of DEC from PC. The Benson group contribution and the Rozicka-Domalski model method were used to estimate standard heat of formation of some components and the coefficient of heat capacity (Cp) with temperature. The reaction was found to be mildly endothermic. Mg-La has been synthesized using precipitation method using various Mg/La molar ratios (0.5, 1, 2, 2.5, and 4). Mg-La2 was determined to be the catalyst that performed best among all the synthesized catalysts. The effect of precipitants on the physiochemical properties of the catalyst was also studied. The basicity of the catalysts was determined to be in high correlation with PC conversion; 46% DEC yield was obtained with 63.6% PC conversion and 72.3% selectivity at 150 °C in 4 h using 1.3% catalyst. Equilibrium thermodynamics study of the reaction was also studied by calculating the equilibrium constant on the basis of both the number of moles of components and activity coefficients. © 2018 American Chemical Society.
Citation: Industrial and Engineering Chemistry Research (2018), 57(38): 12726-12735
URI: https://doi.org/10.1021/acs.iecr.8b02080
http://repository.iitr.ac.in/handle/123456789/2661
Issue Date: 2018
Publisher: American Chemical Society
ISSN: 8885885
Author Scopus IDs: 57188985875
35565811700
Author Affiliations: Shukla, K., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
Srivastava, V.C., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
Corresponding Author: Shukla, K.; Department of Chemical Engineering, Indian Institute of Technology RoorkeeIndia; email: kartikeyashr@gmail.com
Appears in Collections:Journal Publications [CH]

Files in This Item:
There are no files associated with this item.
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.