Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/2498
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar B.-
dc.contributor.authorKumar S.-
dc.contributor.authorSinha, Shishir N.-
dc.contributor.authorKumar S.-
dc.date.accessioned2020-10-06T14:09:51Z-
dc.date.available2020-10-06T14:09:51Z-
dc.date.issued2018-
dc.identifier.citationBioresource Technology (2018), 261(): 385-393-
dc.identifier.issn9608524-
dc.identifier.other29684868-
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2018.04.035-
dc.identifier.urihttp://repository.iitr.ac.in/handle/123456789/2498-
dc.description.abstractA thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573–1473 K), pressure (1–10 atm), and steam/fuel molar feed ratio (FABE = 5.5–12) have been investigated on equilibrium compositions of products, H2, CO, CO2, CH4 and solid carbon. The best suitable conditions for maximization of desired product H2, suppression of CH4, and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. © 2018 Elsevier Ltd-
dc.language.isoen_US-
dc.publisherElsevier Ltd-
dc.relation.ispartofBioresource Technology-
dc.subjectAcetone-butanol-ethanol-water mixture-
dc.subjectEnergy-
dc.subjectExergy-
dc.subjectHydrogen-
dc.subjectSteam reforming-
dc.titleUtilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses-
dc.typeArticle-
dc.scopusid35174529700-
dc.scopusid57209548014-
dc.scopusid7403739121-
dc.scopusid55367444400-
dc.affiliationKumar, B., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India-
dc.affiliationKumar, S., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India-
dc.affiliationSinha, S., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India-
dc.affiliationKumar, S., Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India-
dc.description.correspondingauthorKumar, S.; Department of Chemical Engineering, Indian Institute of Technology RoorkeeIndia; email: skumar.iitroorkee@gmail.com-
Appears in Collections:Journal Publications [CH]

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.