Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/19719
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas S.-
dc.contributor.authorSwaminathan, Anbhu-
dc.date.accessioned2022-02-04T06:51:50Z-
dc.date.available2022-02-04T06:51:50Z-
dc.date.issued2020-
dc.identifier.citationMathematical Inequalities and Applications(2020), 23(1): 71-76-
dc.identifier.issn13314343-
dc.identifier.urihttps://doi.org/10.7153/mia-2020-23-06-
dc.identifier.urihttp://repository.iitr.ac.in/handle/123456789/19719-
dc.description.abstractIn this work, we discuss some new inequalities and a concavity property of the polygamma function ψ n (x) = ψ (x), x > 0, where ψ (x) represents the digamma function (i.e. logarithmic derivative of the gamma function Γ(x)). Using these inequalities, minimum value of harmonic mean of (−1) ψ n (x) and (−1) ψ n (1/x) is obtained in terms of the Riemann zeta function and the Bernoulli numbers. Further new characterizations of π and the Apéry’s constant are also presented as a consequence. ( ) dn n ( ) n ( ) dx n-
dc.language.isoen_US-
dc.publisherElement D.O.O.-
dc.relation.ispartofMathematical Inequalities and Applications-
dc.subjectHarmonic mean-
dc.subjectInequalities-
dc.subjectMonotonicity properties-
dc.subjectPolygamma function-
dc.titleA harmonic mean inequality for the polygamma function-
dc.typeArticle-
dc.scopusid56420537900-
dc.scopusid55209564300-
dc.affiliationDas, S., Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand, 831014, India-
dc.affiliationSwaminathan, A., Department of Mathematics, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India-
dc.description.correspondingauthorDas, S.; Department of Mathematics, India; email: souravdasmath@gmail.com-
Appears in Collections:Journal Publications [MA]

Files in This Item:
There are no files associated with this item.
Show simple item record


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.