Skip navigation
Please use this identifier to cite or link to this item: http://repository.iitr.ac.in/handle/123456789/16432
Title: Labeling of clusters based on critical analysis of texture measures
Authors: Singh D.
Chamundeeswari V.V.
Sorgel U.
Heipke C.
Jacobsen K.
Rottensteiner F.
Published in: Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Abstract: It is well known that unsupervised classification of a single polarized SAR image is accomplished mainly by two steps i.e., (i) Clustering the SAR image into groups or clusters on the basis of backscattering coefficient and textures present in SAR image, and (ii) Labeling the various clusters in their respective class (For example, land cover types such as water, urban, agriculture or any other areas). In this context, labeling is termed as naming the various clusters or groups of pixels according to nature of the terrain as a certain land cover type it belongs to. Labeling of various clusters is a crucial and important aspect to identify various clusters in their original class (here, land cover class is assumed as class, whereas, in general, class may refer to any group of targets). It is still a challenging task to label the cluster without any a priori information. So, it is important to develop such a technique by which clusters can be labeled according to their class. Therefore, focus in this paper is to induct surface roughness with backscattering coefficient to label various clusters (i.e. major land cover types). We have proposed an empirical relation to estimate roughness parameters from the SAR image. Labeling of clusters was carried out on the basis of roughness parameters and backscattering coefficient.
Citation: Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, (2013), 317- 320
URI: http://repository.iitr.ac.in/handle/123456789/16432
Issue Date: 2013
Publisher: International Society for Photogrammetry and Remote Sensing
Keywords: Backscattering coefficient
Clusters
Labeling
SAR
Surface roughness
ISSN: 16821750
Author Scopus IDs: 36912015700
23484281700
Author Affiliations: Singh, D., Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, India
Chamundeeswari, V.V., Department of Computer Science Engineering, Velammal Engineering College, Chennai, India
Appears in Collections:Conference Publications [ECE]

Files in This Item:
There are no files associated with this item.
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.