Skip navigation
Please use this identifier to cite or link to this item:
Title: Experimental and numerical investigation of R-134a flow through a lateral type diabatic capillary tube
Authors: Khan M.K.
Kumar R.
Sahoo, Pradeep K.
Published in: HVAC and R Research
Abstract: This paper presents the performance of R-134a through a diabatic capillary tube with lateral configuration. The paper is divided into two sections: (1) an experimental investigation of straight and helical diabatic capillary tubes and (2) a numerical investigation of the straight diabatic capillary tube. In the experimental investigation, the effects of parameters such as capillary tube diameter, capillary tube length, coil pitch, and inlet subcooling on the refrigerant mass flow rate through a diabatic capillary tube were studied. In addition to the parameters mentioned above, the mass flow rate through a diabatic helical capillary tube was also found to be a function of suction-line inlet superheat and heat exchange length. The suction-line inlet superheat in the present investigation is not a controlled parameter. A comparison of the results of diabatic helical capillary and adiabatic helical capillary tubes was also made. On the basis of acquired experimental data, a correlation to predict the refrigerant mass flow rate was proposed. It was found that the predictions of the proposed correlation are within ±5% agreement with the experimental data. In the numerical investigation, a mathematical model was developed by applying laws of conservation of mass, momentum, and energy to a straight diabatic capillary tube. These differential equations were solved numerically using a finite difference method. The developed model was validated with experimental data from previous and present research. Further, a comparison was also made between the proposed model and the models of Sinpiboon and Wongwises (2002) and Valladares (2007). © 2008 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
Citation: HVAC and R Research (2008), 14(6): 871-904
Issue Date: 2008
ISSN: 10789669
Author Scopus IDs: 22834936000
Author Affiliations: Khan, M.K., Department of Mechanical Engineering, Thapar University Patiala, India
Kumar, R., Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India
Sahoo, P.K., Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India
Appears in Collections:Journal Publications [ME]

Files in This Item:
There are no files associated with this item.
Show full item record

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.