Skip navigation

Browsing by Author Scopus IDs 15135210300

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 20 of 97  next >
Issue DateTitleAuthor(s)
2017A genuine family of Bernstein-Durrmeyer type operators based on Polya basis functionsNeer T.; Agrawal P.N.
2017A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integersChauhan R.; Ispir N.; Agrawal P.
2013A q-analogue of modified beta operatorsGupta V.; Agrawal P.N.; Verma D.K.
2013Approximation by Baskakov-Durrmeyer-Stancu operators based on q-integersVerma D.K.; Agrawal P.N.
2017Approximation by bivariate bernstein-durrmeyer operators on a triangleGoyal M.; Kajla A.; Agrawal P.N.; Araci S.
2012Approximation by complex Baskakov-Stancu operators in compact disksGal S.G.; Gupta V.; Verma D.K.; Agrawal P.N.
2015Approximation by complex q-modified Bernstein–Schurer operators on compact disksAgrawal P.N.; Sathish Kumar A.
2013Approximation by iterates of Beta operatorsAgrawal P.N.; Singh K.K.; Mishra V.K.
2020Approximation by modified paltanea operatorsGupta V.; Agrawal P.N.
2014Approximation by q-Baskakov Durrmeyer type operatorsAgrawal P.N.; Kumar A.S.
2019Approximation degree of a Kantorovich variant of Stancu operators based on Polya–Eggenberger distributionAgrawal P.N.; Acu A.M.; Sidharth M.
2018Approximation degree of Durrmeyer–Bézier type operatorsAgrawal P.N.; Araci S.; Bohner M.; Lipi K.
2016Approximation of B-continuous and B-differentiable functions by GBS operators of q-Bernstein-Schurer-Stancu typeSidharth M.; Ispir N.; Agrawal P.N.
2018Approximation of functions by bivariate q-stancu-durrmeyer type operatorsNeer T.; Acu A.M.; Agrawal P.
1998Approximation of Unbounded Functions by a New Sequence of Linear Positive OperatorsAgrawal P.N.; Thamer K.J.
2015Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functionsAgrawal P.N.; Ispir N.; Kajla A.
2016Approximation properties of Lupas–Kantorovich operators based on Polya distributionAgrawal P.N.; Ispir N.; Kajla A.
2015Approximation properties of Szász type operators based on Charlier polynomialsKajla A.; Agrawal P.N.
2017Approximation Properties of the Modified Stancu OperatorsAcu A.M.; Agrawal P.N.; Neer T.
2018Approximation with certain genuine hybrid operatorsGupta V.; Rassias T.M.; Agrawal P.N.; Goyal M.