Skip navigation

Browsing by Author Kajla A.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 14 of 14
Issue DateTitleAuthor(s)
2017Approximation by bivariate bernstein-durrmeyer operators on a triangleGoyal M.; Kajla A.; Agrawal P.N.; Araci S.
2015Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functionsAgrawal P.N.; Ispir N.; Kajla A.
2016Approximation properties of Lupas–Kantorovich operators based on Polya distributionAgrawal P.N.; Ispir N.; Kajla A.
2015Approximation properties of Szász type operators based on Charlier polynomialsKajla A.; Agrawal P.N.
2017Baskakov-szász-type operators based on inverse pólya-eggenberger distributionKajla A.; Acu A.M.; Agrawal P.N.
2016GBS Operators of Lupaş–Durrmeyer Type Based on Polya DistributionAgrawal P.N.; Ispir N.; Kajla A.
2014Generalized Baskakov-Szász type operatorsAgrawal P.N.; Gupta V.; Sathish Kumar A.; Kajla A.
2019Jain–Durrmeyer Operators Involving Inverse Pólya–Eggenberger DistributionGarg T.; Agrawal P.N.; Kajla A.
2015Modified Baskakov-Szász operators based on q-integersAgrawal P.N.; Kajla A.; Srivastava H.M.; Agrawal P.N.; Singh U.; Mohapatra R.N.
2016Q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variablesKajla A.; Ispir N.; Agrawal P.N.; Goyal M.
2019Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain–Durrmeyer operators of blending typeKajla A.; Deshwal S.; Agrawal P.N.
2015Rate of convergence of Lupas Kantorovich operators based on Polya distributionIspir N.; Agrawal P.N.; Kajla A.
2015Szász-Durrmeyer type operators based on Charlier polynomialsKajla A.; Agrawal P.N.
2016Szász-Kantorovich type operators based on Charlier polynomialsKajla A.; Agrawal P.N.