Skip navigation

Browsing by Author Ispir N.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 14 of 14
Issue DateTitleAuthor(s)
2017A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integersChauhan R.; Ispir N.; Agrawal P.
2016Approximation of B-continuous and B-differentiable functions by GBS operators of q-Bernstein-Schurer-Stancu typeSidharth M.; Ispir N.; Agrawal P.N.
2015Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functionsAgrawal P.N.; Ispir N.; Kajla A.
2016Approximation properties of Lupas–Kantorovich operators based on Polya distributionAgrawal P.N.; Ispir N.; Kajla A.
2017Bézier variant of modified Srivastava-Gupta operatorsNeer T.; Ispir N.; Agrawal P.N.
2019Bivariate q -Bernstein-Chlodowsky-Durrmeyer type operators and the associated GBS operatorsGarg T.; Ispir N.; Agrawal P.N.
2017Blending type approximation by bivariate Bernstein-Kantorovich operatorsDeshwal S.; Ispir N.; Agrawal P.N.
2017Blending type approximation by q-generalized Boolean sum of Durrmeyer typeSidharth M.; Ispir N.; Agrawal P.N.
2015GBS operators of Bernstein-Schurer-Kantorovich type based on q-integersSidharth M.; Ispir N.; Agrawal P.N.
2016GBS Operators of Lupaş–Durrmeyer Type Based on Polya DistributionAgrawal P.N.; Ispir N.; Kajla A.
2017Kantorovich variant of a new kind of q-Bernstein–Schurer operatorsRuchi R.; Ispir N.; Agrawal P.N.
2016Q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variablesKajla A.; Ispir N.; Agrawal P.N.; Goyal M.
2018Quantitative Estimates of Generalized Boolean Sum Operators of Blending TypeAgrawal P.N.; Ispir N.; Sidharth M.
2015Rate of convergence of Lupas Kantorovich operators based on Polya distributionIspir N.; Agrawal P.N.; Kajla A.